

Геофизический мониторинг, как составная часть Национальной системы мониторинга окружающей среды Республики Беларусь, осуществляется в целях контроля за сейсмичностью, геофизическими и геодинамическими процессами, а также выявления повышенной тектонической активности в местах расположения экологически опасных хозяйственных объектов.

Ежегодно геофизический мониторинг проводится по направлениям:

 – сейсмический мониторинг, представляющий собой систему непрерывных круглосуточных наблюдений за происходящими сейсмическими событиями естественного и искусственного происхождения в широком диапазоне энергий и расстояний; – геомагнитный мониторинг, включающий периодические наблюдения за геодинамическими процессами на полигонах и непрерывные стационарные наблюдения за текущими состоянием геомагнитного поля;

мониторинг гравитационного поля Земли.

Сеть пунктов наблюдений геофизического мониторинга приведена на рисунке 9.1.

Сейсмологические исследования позволяют изучать причины происхождения кинематические и динамические параметры очагов землетрясений, а также оценивать степень сейсмических воздействий, их опасность и риск для народно-хозяйственных объектов; создание систем наблюдений; разрабатывать методы предсказания землетрясений.

Обзор сейсмичности территории Беларуси. В 2011 г. сейсмологические наблюдения проводились в непрерывном режиме на следующих пунктах наблюдений: геофизических обсерваториях «Плещеницы», «Нарочь» и сейсмических станциях «Солигорск», «Полоцк», «Могилев», «Литвяны». Наблюдения осуществляются в Центре геофизического

Рисунок 9.1 – Сеть пунктов наблюдений геофизического мониторинга (по состоянию на 01.01.2012 г.) **242**

мониторинга НАН Беларуси. Первичная обработка полученной сейсмической информации заключается в определении моментов вступлений, знаков и чёткости вступлений сейсмических волн; определение сейсмических волн; измерении амплитуд и периодов сейсмических волн. Обработка сейсмической информации осуществлялась в трёх режимах: срочном (составление и подача сводки срочных донесений о сильном или ощутимом землетрясении в течение часа после регистрации события); оперативном (более полная обработка сейсмических событий за истекшие сутки); режиме станционной обработки данных с составлением ежедекадных бюллетеней. Обработанные данные формировались в обзоры сейсмичности.

В 2011 г. сетью сейсмических станций зарегистрировано и обработано 1640 землетрясений в разных регионах Земли в широком диапазоне энергий и эпицентральных расстояний, из них 297 землетрясений с магнитудой М≥6,0. Самое сильное землетрясение с магнитудой М=8,9 произошло 11 марта (10^h41^m UTC) в районе восточного побережья острова Хонсю, Япония.

В результате анализа и обобщения сейсмологических данных (бюллетени

сейсмических станций Беларуси) составлен каталог землетрясений территории Беларуси за 2011 г., который содержит сведения о кинематических и динамических параметрах землетрясений и включает 19 сейсмических событий энергетического диапазона К=5,0-8,3 (этот диапазон характеризуется слабой сейсмической активностью с магнитудным потенциалом М=0,5-2,4). Согласно зафиксированным данным землетрясение с наименьшим энергетическим классом произошло 8 марта в 03^h13^m, а с максимальным - 22 марта в 20^h52^m. На рисунке 9.2 приведена карта эпицентров сейсмических событий, составленная на основе каталога землетрясений Беларуси за 2011 г. Размер окружностей на карте соответствует землетрясениям энергетических классов К=5-8. Ощутимых землетрясений в 2011 году на территории Беларуси не зарегистрировано.

В 2011 г. наблюдалось незначительное повышение (в 1,04 раза) уровня выделившейся суммарной сейсмической энергии $\Sigma E=0,2987\cdot10^9$ Дж по сравнению с 2010 г. ($\Sigma E=0,2867\cdot10^9$ Дж). Зафиксированный уровень сейсмической энергии меньше (в 8,1 раза) среднего многолетнего значения $\Sigma E=2,4250\cdot10^9$ Дж за последние 28 лет

1 – энергетический класс К=5-8; 2 – сейсмическая станция; 3 – город;

4 – государственная граница

Рисунок 9.2 – Карта эпицентров сейсмических событий территории Беларуси, 2011 г.

(1983-2010 гг.). Количество произошедших в 2011 г. сейсмических событий (19) также меньше (в 1,42 раза), чем в 2010 г. (27), и в 2,3 раза меньше среднего многолетнего значения (N₅=43,89). Распределение числа землетрясений и суммарной выделившейся сейсмической энергии по месяцам за 2011 г. представлено на рисунке 9.3. Высвобождение энергии происходило неравномерно в течение года. Максимальное выделение сейсмической энергии наблюдалось в марте и было связано с произошедшим сейсмическим событием энергетического класса К=8,3. Минимальные значения наблюдались в апреле, июне и августе. Максимальное число произошедших сейсмических событий N зафиксировано в марте (диапазон энергетических классов К=5-8), а минимальное количество наблюдалось в январе, феврале, апреле, июне, августе, сентябре и декабре.

Рисунок 9.3 – Месячные значения числа сейсмических событий (1) и величины их суммарной сейсмической энергии (2) за 2011 г.

На рисунке 9.4 показана частота реализации всех сейсмических событий за 2011 год в течение суток с периодами повышения числа событий в ночное время – 03^h и в дневное время – 9^h и 10^h. Анализ частоты реализации сейсмических событий в разные годы не выявил четкого проявления максимумов числа событий в определенное время суток.

В тектоническом плане основная часть сейсмических событий, зарегистрированных в 2011 г., приурочена к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы (Солигорский горнопромышленный район и окружающая его территория). Сопоставление пространственного распределения очагов землетрясений с тектонической характеристикой региона показывает, что большинство представленных здесь разломов сейсмоактивны (рис. 9.5).

Рисунок 9.4 – Распределение сейсмических событий 2011 г. по часам суток

Сейсмические события проявляются на этой территории вдоль разломов различного направления (или их звеньев), а также сконцентрированы в зонах их пересечения, т.е. слабые землетрясения в общих чертах трассируют разломы. Результаты наблюдений показывают приуроченность землетрясений к следующим разломам: субмеридионального простирания - суперрегиональному Стоходско-Могилевскому и субширотно-ГО простирания – суперрегиональному Северо-Припятскому, региональным: Ляховичскому, Речицкому, Червонослободско-Малодушенскому и Шестовичскому. Отдельные эпицентры землетрясений попадают в зоны пересечения субмеридиональных и субширотных разломов: суперрегионального Стоходско-Могилевского с Червонослободско-Малодушенским и Копаткевичским; суперрегионального Северо-Припятского с Налибокским и Кричевским. Самое сильное землетрясение, произошедшее в 2011 г. 22 марта (К=8,3), было приурочено именно к зоне пересечения Северо-Припятского и Кричевского разломов. Фиксируемая область рассеивания эпицентров землетрясений достаточно обширна и распространяется на расстояние до 100 км за пределы границ шахтных полей горнопромышленного предприятия.

Обзор сейсмичности Европы и смежных областей. Всего на территории Европы и смежных областей в 2011 г. зарегистрировано 460 землетрясений с магнитудой М≥3,0 (рис. 9.6). Самое сильное землетрясение с магнитудой М=7,4 произошло 23 октября (10^h41^m) в Турции. На Европейском континенте наибольшая плотность эпицентров

1 – энергетический класс землетрясений; 2 – населенный пункт; 3 – реки; 4–6 – разломы, проникающие в чехол (4 – суперрегиональные, ограничивающие крупнейшие надпорядковые структуры; 5 – региональные ограничивающие крупные I, II порядка структуры; 6 – локальные); 7–9 – разломы, не проникающие в чехол (7 – суперрегиональные, разграничивающие крупнейшие области разного возраста переработки; 8 – региональные, разграничивающие крупные области разного возраста переработки; 9 – локальные); 10 – разломы (цифры в кружках: 1 – Северо-Припятский, 2 – Налибокский, 3 – Ляховичский, 4 – Речицкий, 5 – Червонослободско-Малодушинский, 6 – Копаткевичский, 7 – Шестовичский, 8 – Сколодинский, 9 – Выжевско-Минский, 10 – Стоходско-Могилевский, 11 – Кричевский, 12 – Чечерский); 11 – граница шахтных полей Солигорского горнопромышленного района

Рисунок 9.5 – Карта проявления сейсмотектонических процессов в северо-западной части Припятского прогиба за 2011 г.

Рисунок 9.6 – Карта эпицентров землетрясений Европы и смежных областей с М≥3,0 за 2011 г.

землетрясений наблюдалась в Альпийском сейсмоактивном поясе. В пределах этого пояса выделилась основная часть суммарной сейсмической энергии за год, остальная её часть относится к внутриконтинентальной и океанической частям. Большая часть очагов землетрясений (447) располагалась на глубине h≤70 км, остальные (13) формировались в диапазоне глубин 71-390 км.

В течение года наименьшее количество землетрясений (18) произошло в апреле, а наибольшее (95), связанное с сейсмической активностью в Турции, – в октябре (рис. 9.7). В 2011 г. отмечено на 109 землетрясений больше, чем в 2010 г. (351) и чуть более среднего многолетнего значения (457,5) за 17 лет (1994-2010 гг.).

Рисунок 9.7 – Количество землетрясений на территории Европы с М≤3,0 в 2011 г.

Геомагнитные исследования, направленные на изучение векового хода составляющих магнитного поля Земли, проводятся в Беларуси на геофизической обсерватории «Плещеницы». Как и в предыдущие годы, непрерывные геомагнитные наблюдения в 2011 г. проводились феррозондовым магнитометром LEMI-022, который регистрирует изменения во времени горизонтальных – Х и У, вертикальной – Z составляющих в декартовой системе координат.

По данным вариационных наблюдений ежемесячно составлялся обзор состояния геомагнитного поля, который включает таблицы среднечасовых и среднесуточных значений элементов геомагнитного поля (H, Z и D), таблицу возмущённости геомагнитного поля по трёхчасовым интервалам значений 9-балльной шкалы *К*-индексов, описание магнитных бурь и их характеристик.

В результате анализа и обобщения геомагнитных данных за 2011 г. составлены таблицы трёхчасовых значений *К*-индексов по Н, D и Z компонентам геомагнитного поля (при этом в таблицу вносили наибольшее значение из трёх элементов, после чего значения *К*-индексов суммировались по суткам и в целом за месяц). На основе этих данных рассчитаны среднемесячные значения суммарных *К*-индексов. Распределение среднемесячных суммарных значений *К*-индексов в течение года проходило неравномерно (рис. 9.8).

Рисунок 9.8 – График изменения среднемесячных значений суммарных К-индексов в 2011 г.

В течение 2011 г. геомагнитной обсерваторией зарегистрированы и обработаны 24 магнитные бури, из них 15 малых бурь (М), 6 умеренных бурь (У) и 3 большие бури (Б) (табл. 9.1). Характеристика магнитных бурь определяется в соответствии со шкалой, приведенной в таблице 9.2.

Обзор состояния геомагнитного поля Земли составлен по среднемесячным значениям элементов D, H, Z, T геомагнитного поля в 2011 г. На протяжении всего года отмечался рост значений элемента D с небольшим

Таблица 9.2 – Характеристика магнитных бурь

Тип бури		D, HT	Н, нТ	Z, HT
малая	(M)	100-139	80-125	40-90
умеренная	(У)	140-200	126-200	91-140
большая	(Б)	201-290	201-270	141-250
очень большая	(ОБ)	>290	>270	>250

	Время					Амплитула за		Активные периоды			оды	Продолици		
№ бури	н	ачал	0	кон	ец	время бури		ури	нача	ало	конец		тельность, Хај	Характе- ристика
• 5P	день	час	мин	день	час	D	Н	Ζ	день	час	день	час	час	promin
<i>Январь</i> - Геомагнитные бури не зарегистрированы														
1	4	16	57	5	0	176	Фев	раль 27	4	10	4	20	15	V
1	4	10	57	5	0	170	139	37	4	21	4	20	15	y
									4	21	5	01		
2	14	15	58	15	02	130	139	51	14	20	14	24	10	М
	1						Ма	рт						
3	1	01	33	3	01	218	113	75	1	14	2	01	48	У
4	0	0.0	0.5	10	22	1.51	0.0	00	2	13	2	20	111	37
4	9	08	05	13	23	151	80	98	10	07	11	08	111	У
									11	10	12	02		
									12	19	12	24		
							Ang	рель	13	10	13	21		
5	1	07	22	4	06	114	86	50	1	16	2	06	71	М
									2	18	3	06		
									3	18	4	06		
6	6	09	32	7	04	145	76	86	6	10	6	17	18	М
7	12	01	48	13	18	88	87	42	12	09	12	18	40	М
									12	23	13	08		
8	29	15	30	1.05	06	119	166	43	29	21	29	23	36	М
								~~~	30	20	30	23		
9	27	13		28	19	125	133	<i>au</i> 146	28	08	28	14	30	У
10	28	21	14	30	03	16	147	52	28	22	29	05	29	М
									29	15	29	20		
							Ин	ОНЬ						
11	4	20	46	6	04	83	142	100	4	21	4	23	31	У
10	22	-	50	24	0.5	0.0	0.2	56	5	00	5	03	24	
12	23	2	59	24	05	88	82	56	23	13	23	15	24	M
13	30	18	11	1	24	93	82	52	1.07	12	1.07	08	30	М
							Ин	ОЛЬ	1.07	12	1.07	1/		
14	4	03	02	5	24	109	71	40	4	21	5	06	45	М
15	19	06	25	20	04	93	98	39	19	16	19	23	46	М
16	30	06	53	1.08	00	109	84	27	30	17	31	01	41	М
17	5	17	53	6	17	218	<u>Авг</u> 214	<i>vcm</i>	5	19	6	04	23	Б
17	5	17	55	0	17	210	Сенп	135 іябрь	5	17	0	04	25	Ъ
18	9	12	27	11	04	244	149	98	9	13	10	04	39	У
									10	15	11	02		
19	12	03	44	13	16	125	116	51	12	15	13	04	36	М
20	17	07	50	18	03	166	101	76	17	12	17	22	19	М
21	26	12	34	28	17	254	164	141	26	16	27	02	53	Б
22	29	00	50	30	04	130	98	51	29	02	29	04	27	М
22	24	10	20	25	10	2(5	$O\kappa m$	яб <u>р</u> ь	24	22	25	0.4	24	Г
23	24	18	29	25	19	200	239 Hos	101 юрь	24	23	25	04	24	b
24	1	09	16	3	02	93	90	62	1	13	1	19	41	М
<i>Декабрь</i> - Геомагнитные бури не зарегистрированы														

## Таблица 9.1 – Геомагнитные бури, зарегистрированные геомагнитной обсерваторией «Минск» (Плещеницы) в 2011 г.

снижением в марте, июне и октябре. Максимальное значение элемента D отмечено в декабре, а минимальное – в марте. Распределение значений элемента H в течение года проходило неравномерно. С января по июнь наблюдалось колебание значений, затем с июля по ноябрь отмечалось снижение значений, а в декабре произошел их рост. Максимальное значение элемента H зафиксировано в июне, а минимальное – в ноябре.

На протяжении всего года наблюдался рост значений элемента Z с небольшой стабилизацией хода в ноябре-декабре. Максимальное значение элемента Z отмечено в декабре, а минимальное – в январе.

В течение года увеличивалось значение элемента Т (полный вектор напряженности магнитного поля Земли) с небольшой стабилизацией хода в марте–апреле, июле– августе. Максимум значений зафиксирован в декабре, а минимум – в январе.

Вековой ход среднегодовых значений элементов геомагнитного поля Земли, определяемый по данным геомагнитной обсерватории «Минск», вычислен, как разность среднегодовых значений элементов геомагнитного поля между последующим и предыдущим годами, и представлен в таблице 9.3.

По изменению наблюдаемых показателей геомагнитное поле в 2011 г. было активным относительно спокойного предыдущего года.

В 2011 г. лабораторией геодинамики и палеогеографии Института природопользования НАН Беларуси завершено формирование сети геофизического мониторинга

Таблица 9.3 – Вековой ход среднегодовых значений элементов геомагнитного поля Земли между 2011-2010 годами

Элементы	2011 г.	2010 г.	Разность	
D	7°43.0′	7°35.6′	7.4′	
Н	17788	17789	-1	
Z	47720	47681	39	
Т	50927	50892	35	

(создан Глушкевичский локальныйо полигон). Полигон предназначен для установления аномальности поведения вариаций во времени гравитационного и магнитного полей в зоне пересечения Южно-Припятского глубинного разлома; выяснения природы этого явления и его воздействия на различные народно-хозяйственные объекты (рис. 9.9). Пункты наблюдений Глушкевичского локального геодинамического полигона расположены в точках оптимального местоположения полевых магнитовариационных станций и реперов, позволяющих исключить особо интенсивные помехи техногенного происхождения при долговременных измерениях вариаций и при синхронном измерении сверхкороткопериодных вариаций (рис. 9.10).

В течение года на полигоне выполнены первые контрольные измерения вариаций геомагнитного поля и приращений и поля силы тяжести между пунктами полигона. Короткопериодные вариации в пределах Глушкевичского полигона амплитудой более 2 нТл и с периодом 4-5 минут проявились на всех реперах. Характер кривых, амплитуда и период короткопериодных колебаний (КПК)



Рисунок 9.9 – Глушкевичский полигон. Тектоническое положение



Рисунок 9.10 - Структура Глушкевичского полигона

магнитного поля указывают на родственную природу и неглубокую локализацию источников электромагнитных излучений (рис. 9.11). Необходимо отметить, что КПК проявились в виде более высоких гармоник на фоне длинноволновых колебаний, параметры которых в исследуемом интервале времени можно интерпретировать как производные глубинных процессов. Градиент, характер нарастания-угасания кривой, амплитуда 3-5 нТл и периодичность от 4-5 минут для коротких и около 20 минут для средних, позволяют предположить, что зарегистрированные электромагнитные колебания, достигая поверхности, проходят через геоэлектрически неоднородную среду. То есть источник(и) излучения расположен достаточно глубоко и экранирован геоэлектрически неоднородными приповерхностными горизонтами.

Результаты первого цикла измерений векового хода магнитного поля между пунктами



на пунктах Глушкевичского полигона

Глушкевичского полигона свидетельствуют о том, что геодинамическая характеристика полигона разлома пока носит стартовый, семантический характер.

В 2011 г. были продолжены наблюдения на *Лидском локальном геодинамическом полигоне*, созданным для установления аномальности поведения вариаций во времени гравитационного и магнитного полей в зоне пересечения полигоном Кореличского глубинного разлома и выявления характера воздействия на трубопровод Ямал-Европа.

В таблице 9.4 и на рисунке 9.12 отражены результаты гравиметрических исследований приращений поля силы тяжести между пунктами Лидского полигона за период 2008-2011 гг. Результаты четырехлетних исследований показали, что ярко выраженных аномальных отклонений не наблюдается. Характер годовых вариаций гравитационного поля во времени на пунктах Лидского



полигона за период 2010-2011 гг. не превышает сотых долей мГала, что соответствует спокойному геодинамическому состоянию платформенного тектонического режима. Отмечается тенденция небольшого роста значений гравитационного поля на пунктах восточного от разлома крыла полигона (Бурмаки – Тишковщина) и спад значений на западном крыле. Этим явлениям соответствует, в первом случае, увеличение плотности, во втором, разуплотнение пород. Очевидно, что кроме сезонного климатического фактора здесь имеет место влияние Кореличского глубинного разлома, как граничного фактора горизонтальных блоковых движений.

Аномального отклонения короткопериодных *геомагнитных вариаций* на полигоне не зафиксировано (рис. 9.13). На пункте Бартоши, где согласно принятой технологии работ наблюдения проводились в течение более 30 минут, зарегистрированы длинноволновые колебания, параметры которых в исследуемом интервале времени трудно оценить. Незначительный градиент, плавный характер нарастания-угасания кривой, амплитуда не более 2 нТл и период около 20 минут позволяют предположить их происхождение от достаточно глубоко расположенного источника возбуждения.

Как для магнитного поля, так и для гравитационного, делать выводы о характере векового хода по четырехгодичному циклу наблюдений весьма рано. Тренды и колебания

Таблица 9.4 – Результаты измерений приращений поля силы тяжести между пунктами Лидского полигона

Пункт	Приращение по годам, мГал								
наблюдения	2008	2009	2010	2011					
Бартоши	0,0	0,0	0,0	0,0					
Криница	6,342	6,332	5,385	5,434					
Дайнова Большая	-6,586	-7,486	-6,493	-6,400					
Воложин	7,542	7,762	7,094	7,010					
Бурмаки	2,562	1,774	2,144	2,198					
Семерники	-6,402	-7,067	-6,339	-6,268					
Тишковщина	-9,305	-9,432	-8,435	-8,534					
о									
- I M M M M M M M M M M M M M M M M M M									
	1227 1228 1228 1228 1228 1228 1228 1228	12.35 12.36 12.38 12.38 12.38 12.40 12.41 12.41 12.41	1243 1244 1245 1245 1248 1248 1248	12.53 12.53 12.55 12.55 12.55 12.55 12.55					

Рисунок 9.13 – Короткопериодные колебания магнитного поля во времени на крайнем пункте Бартоши

значений не выходят за пределы естественных годовых изменений, характерных для платформенных геодинамических условий.

В 2011 г. завершен двухгодичный цикл высокоточных геодинамических гравиметрических и магнитометрических наблюдений на геофизических реперах Борисовского локального геодинамического полигона, на котором изучается состояние глубинного Чашникского разлома. Параллельно трассе профиля полигона проходит газопровод Ямал-Европа. Характер динамики магнитострикционных и дилатационных процессов в месте пересечения глубинного Чашникского разлома и нитки газопровода представляет область повышенной опасности. Исследования проводились путем измерений вдоль линии профиля, пересекающей разлом. Данные измерений свидетельствуют о том, что ярко выраженных аномальных отклонений не наблюдается. Характер изменений

гравитационного поля соответствует спокойному геодинамическому состоянию платформенного тектонического режима.

В таблице 9.5 отражены результаты приращений поля силы тяжести между пунктами Борисовского полигона за 2010-2011 гг.

На рисунке 9.14 приведены результаты измерения приращений и колебания вариаций геомагнитного поля на пунктах Борисовского геодинамического полигона. Короткопериодные вариации в пределах Борисовского полигона амплитудой более 2 нТл и с периодом 4-5 минут (аномальные по принятому стандарту интерпретации) проявились на репере Шейка, который расположен за пределами расчетной зоны динамического влияния Чашникского разлома. Характер кривой, амплитуда и период короткопериодных колебаний магнитного поля указывают на неглубокую локализацию неопознанного источника электромагнитных излучений.

Таблица 9.5 – Результаты измерений приращений поля силы тяжести и магнитного поля между пунктами Борисовского полигон

Пункт	Прир тяжес	ащение по сти по года	оля силы ам, мГал	Приращение магнитного поля по годам, нТл			
наолюдения	2010	2011	изменение	2010	2011	изменение	
Шейка	0,000	0,000	0,0	0,0	0,0	0,0	
Плиса	-6,454	-6,446	-0,008	-240,37	-249,79	9,42	
Граница	5,133	5,129	0,004	354,34	359,23	-4,89	
Сани	5,473	5,467	0,006	871,41	861,92	9,49	
Калюги	-1,226	-1,147	-0,079	-28,29	-27,17	-1,12	



По характеру аномальных отклонений величин вариаций между пунктами Борисовского полигона можно сделать выводы о том, что крайние пункты (Шейка – Калюги) расположены в геоэлектрически различных блоках (рис. 9.15).

Отражением геодинамики Чашникского разлома может быть то, что на западном крыле разлома происходит гетерофазная взаимная коррелируемость вековых вариаций гравитационного и геомагнитного полей, а на восточном наоборот, синфазная. Если на западном крыле проявляются одновременно снижение силы тяжести и рост намагниченности, то на восточном крыле (Сани, Калюги) рост либо спад полей происходит синхронно. Эти геофизические эффекты отражают процессы разуплотнения и раскристаллизации за счет восходящих гидрогеохимических процессов (Плиса), повышения плотности и раскристаллизации в зоне пассивного гидрогеохимического режима (Сани), разуплотнения толщи и разрушения (выщелачивание) магнитных минералов за счет нисходящих гидрогеохимических процессов (Калюги). В теле разлома могут происходить процессы разрушения (выщелачивание) магнитных минералов и выноса легкой фракции за счет нисходящих гидрогеохимических процессов.

Результаты изучения хода гравитационного и геомагнитного полей во времени на полигонах геодинамического мониторинга позволяют сделать вывод о том, что:

– на геодинамических полигонах, вследствие сухих сезонов 2010 и 2011 годов, наступила дилатационная и геоэлектрическая стабилизация главного объекта исследований – приповерхностной зоны активного водообмена, что вызвало замедление хода приповерхностных литохимических процессов на крыльях разломов, привело к тектонофизическому и геофизическому «штилю» и изменению установленной ранее симметрии развития приразломных геодинамических процессов;

 незначительные изменения гравитационного и магнитного полей во времени обусловлены фоновым платформенным режимом тектонофизических процессов. Аномальность геомагнитных вариаций приурочена в основном к зоне Северо-Припятского и Южно-Припятского разломов. Остальная часть Беларуси в геомагнитном отношении инертна.



Рисунок 9.15 – Изменение вариаций гравитационного и магнитного полей на Борисовском полигоне за два цикла наблюдений